MMAT 5010 Linear Analysis (2023-24): Homework 5 Deadline: 02 Mar 2024

Important Notice:

 \clubsuit The answer paper must be submitted before the deadline.

 \blacklozenge The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.

- 1. Suppose that the Euclidean space \mathbb{R}^n is endowed with the usual norm, that is, $||x||_2 := \sqrt{\sum_{k=1}^n |x_k|^2}$ for $x = (x_1, ..., x_n) \in \mathbb{R}^n$. For each $x \in \mathbb{R}^n$, put $||x||_{\infty} := \max_{1 \le k \le n} |x_k|$. Using the definition of equivalent norms, show that $||\cdot||_2$ and $||\cdot||_{\infty}$ are equivalent norms. From this, show that if we let $I : (\mathbb{R}^n, ||\cdot||_{\infty}) \to (\mathbb{R}^n, ||\cdot||_2)$ be the identity map, i.e., I(x) = x for all $x \in \mathbb{R}^n$, then the map I and its inverse map I^{-1} both are continuous.
- 2. Let $X := \{f : [a,b] \to \mathbb{R} : f \text{ is continuous on } \mathbb{R}\}$. For each $f \in X$, let $||f||_1 := \int_a^b |f(t)| dt$ and $||f||_{\infty} := \sup\{|f(t)| : t \in [a,b]\}$. Put

$$Tf(x) := \int_{a}^{x} f(t)dt$$

for $x \in [a, b]$. Show that $T: (X, \|\cdot\|_1) \to (X, \|\cdot\|_\infty)$ is a bounded linear map of norm 1.

*** Happy Year of Dragon***